SUBSTITUENT EFFECTS IN THE GENERATION AND TRAPPING OF 1,2-DICHLORO-3,3-DIALKYLBUT-2-EN-1-YLIDENES

Juma'a Al-Dulayymi, Mark S. Baird* and Helmi H. Hussain, Department of Chemistry, University of Newcastle upon Tyne, GB NE1 7RU.

The ring-opening of cyclopropenes (1) to carbenes (3) occurs more readily when X is an electron releasing group, and in the case of $(1, X = C_eH_4 - 4 - Y)$ the rate of cyclopropanation of alkenes correlates with σ_I for Y. The selectivity of carbenes (3, X = H, OMe) towards alkenes correlates well with that for tetrachloroprop-2-en-1-ylidene.

The cyclopropene – vinylcarbene interconversion has been the subject of several theoretical,¹ and experimental studies.² In most cases, eg. 3,3-dimethylcyclopropene³ and tetrachloro-cyclopropene,⁴ the ring-opening only occurs at a reasonable rate at 150 – 180 °C. However, a number of 3,3-dialkylcyclopropenes having an electron withdrawing substituent at C-1 open at ambient temperature or below.^{5,6} Thus the chlorides (1, X = H, Cl, OMe, Ph) react with alkenes $R_1R_2C=CR_3R_4$ at 20 °C or below to produce cyclopropanes (2) apparently derived by addition of the carbenes (3).^{6,7} Although there are a number of possible singlet and triplet structures for vinylcarbenes,¹ one possible explanation for the case of ring-opening would invoke heterolytic cleavage to a transition state similar to (4), which could be stabilized by electron releasing substituents at C₃ and electron withdrawing ones at C₁, and which, if 90° rotation occurred at C₃, would correspond to the dipolar resonance form of the planar singlet carbene.

We now report the effect of changing the substituent at C-3 on the rate of ring opening of (1) and the selectivity of trapping of derived carbenes. The following conclusions may be drawn:

(i) The selectivity of carbenes (3, X = H, OMe) towards alkenes at 20 °C does not give a good linear correlation with that for dichlorocarbene at 20 °C, but compares better with that observed for 1,2,3,3-tetrachloroprop-2-en-1-ylidene (5) at 180 °C. Ethereal solutions of the cyclopropenes (1, X = H, OMe) were allowed to stand for several hours at 20 °C with an excess of a mixture of alkenes, and the ratio of derived cyclopropanes (2, X = H or OMe) was determined by g.l.c., standardizing the responses with known mixtures of the cyclopropanes.^{6,7}

The results are summarised in the Table.

TABLE Relative Reactivities of Carbenes (3) and (5) Towards Alkenes**

	(3, X = H)	(3, X - OMe)	(5)
2,3-dimethylbut-2-ene	1.0+	1.0	1.0
2-methylbut-2-ene*	1.54	1.1	1,44
2-methylprop-1-ene	0.95	0.75	0,63
trans-but-2-ene	0.10	0.08	0.2
cis-but-2-ene*	0.48	0.34	0.64
methyl acrylate*	0.40	0.06	
methyl methacrylate*	3.22	0.81	

It is apparent that the reactivity patterns of the two carbenes (3, X = H, OMe) with alkylalkenes are very similar; indeed a plot of $log(k/k_0)$ for one carbene against that for the other gives a straight line with a slope of 1.08, corresponding to carbenes of almost equal selectivity. However, a plot of log (k/k_0) for either species against the corresponding figures for dichlorocarbene⁸ does not, unlike many such plots, lead to a good linear correlation (fig. 1a). A similar plot for either of the carbenes (3, X = H, OMe) against carbene (5)⁹ does lead to a reasonable correlation, eg. (fig. 1b), especially when the difference in the temperatures of reaction (20 and 180 °C respectively) and slight differences in the alkenes used are taken into account;¹⁰ once again the slope corresponds to carbenes of approximately equal selectivity. It is also noteworthy that carbenes (3, X = H, OMe) react readily with electron poor alkenes, but that in the cases examined there is a marked difference in reactivity between the two species.

Fig.1 Relative reactivities towards alkylalkenes compared to 2,3-dimethylbut-2-ene (k_0)

(ii) Although the reactions of (1, X = H, OMe) with cis- and trans-but-2-ene are stereospecific,^{6,7} addition of (1, X = H) to dimethyl maleate is not. Reaction of the cyclopropene (1, X = H) with dimethyl fumarate led to an adduct (6) in low yield (35 %).¹¹ The reaction of dimethyl maleate with the same cyclopropene proceeded in even lower yield (17 %), but an inseparable mixture of the two adducts (6) and (7)¹² was isolated (ca. 3:2). A similar non-stereospecific addition to maleates has been reported for phenylhalocarbenes,^{13a} and for 3,3-dimethoxyvinylcarbene.^{13b}

(iii) The rate of formation of the cyclopropanes (2) is not dramatically affected by the solvent. The cyclopropene (1, X = H) was allowed to stand in d-chloroform, d_6 -benzene or d_6 -acetone in the presence of excess 2,3-dimethylbut-2-ene, and the reactions were followed by n.m.r. at 283 K.⁺⁺ The disappearance of the cyclopropene in each case followed pseudo-first order kinetics, with a corresponding increase in the signals for (2). The rates of reaction in chloroform and benzene were essentially identical (ca 2 x $10^{-2} \sec^{-1}$), while that in acetone was about twice as fast.¹⁴ The cyclopropene (1, X = Cl) is rather more stable and at the same concentrations reacts completely in ca 2h at 310 K in the presence of an alkene. Again, the reaction proceeds about 50 % faster in acetone than in chloroform or benzene (k = 2 x $10^{-3} \sec^{-1}$). The temperature dependence of the rate of reaction of (1, X = Cl) with 2,3-dimethylbut-2-ene in CDCl₃ between 293 and 323 K corresponds to an E_{act} of ca 61 kJ/mol, very much lower than those reported for simple alkylcyclopropene.¹⁵

(iv) The rate of reaction of cyclopropenes (8) with 2,3-dimethylbut-2-ene to give cyclopropanes (9) can be correlated with the electronic character of the p-substituent. Equimolar quantities of pairs of cyclopropenes (8) were allowed to react with excess 2,3-dimethylbut-2-ene in d-chloroform at ambient temperature and the reactions were followed by n.m.r. using the signal for the benzylic methylene groups. In each case a plot of log(c) versus time gave a good linear correlation, the relative rates being in the order Me > H > MeO > CF₃ (ca. 19:16:12:7). A plot of log(kY/k(Y=H)) for the rates compared to that for (8, Y = H) against $\sigma_{\rm I}$ for the substituent,¹⁶ gives a reasonable correlation, with a ρ -value of -0.8 (fig.2), corresponding to a reaction in which electron release at C₃ causes an increase in the rate.

We wish to thank the Government of Iraq and the Arabian Gulf University for the award of

grants to J.A-D and H.H.H. respectively.

- 1. For a recent study see N.Honjou, J.Pacansky and M.Yoshimine, J.Amer.Chem.Soc., 1984, 106, 5361.
- 2. For a recent review see B.Halton and M.G.Banwell, "Cyclopropenes", in The Chemistry of Functional Groups, Cyclopropanes, Part II, Ed. Z. Rappoport, Wiley, 1988.
- 3. A.deMeijere, S.Untiedt and R.Walsh, personal communication; R.Srinivasan, J.Chem.Soc., Chem.Comm., 1971, 1041.
- 4. W.Weber and A.deMeijere, Angew.Chem.Int.Edn.Engl., 1980, 19, 138.
- 5. See eg., M.Franck-Neumann and J.J.Lohmann, Tetrahedron Letters, 1979, 2397; Angew.Chem. Int.Edn.Engl., 1977, 16, 323.
- 6. (a) M.S.Baird, S.R.Buxton and J.S.Whitley, *Tetrahedron Letters*, 1984, 1509; (b) M.S.Baird and H.H.Hussain, unpublished results.
- 7. M.S.Baird and J.Al-Dulayymi and W.Clegg, Tetrahedron Letters, 1988, 6149.
- 8. The values used were the same as those quoted in R.A.Moss, M.A.Joyce and J.K.Huselton, *Tetrahedron Letters*, 1975, 4621.
- 9. R.R.Kostikov and A.deMeijere, J.C.S.Chem.Comm., 1984, 1528.
- 10. The alkenes quoted in ref.9 are in some cases slightly different from those used in the present work and those in ref.8; the figures quoted for *cis* and *trans*-hexene and 2-methyl-but-1-ene are assumed to be close to those for *cis* and *trans*-but-2-ene and isobutene.
- 11. This showed $\delta_{\rm H}$ (200 MHz, 303K) 3.78 (3H, s), 3.69 (3H, s), 2.99 (1H, d, J 7.3 Hz), 2.90 (1H, d, J 7.3 Hz), 1.96 (3H, s), 1.83 (3H, s).
- 12. Although the coupling constant for the ring hydrogens (10.8 Hz) shows them to be *cis* to each other, it is not clear whether they are *cis* or *trans* to the alkene; the fact that the ¹³C n.m.r. shows restricted rotation at 233 K may support an all *cis*-arrangement.
- 13. (a) M.P.Doyle, J.W.Terpstra and C.H.Winter, *Tetrahedron Letters*, 1984, 901; (b) P.Binger and B.Biedenbach, *Chem.Ber.*, 1987, 120, 601.
- 14. In each case the cyclopropene reacted even in the absence of an alkene, but at a much lower rate; the products will be described elsewhere. An examination of the rate in methanol was not possible because the cyclopropene (1, X = H) reacts rapidly with this solvent to produce Z-1,2-dichloro-3-methoxy-3-methylbut-1-ene, possibly by proton abstraction from the solvent by (3, X = H) and solvation.
- 15. For a summary of these values see M.G.Steinmetz, R.Srinivasan and W.J.Leigh, *Rev.Chem.Intermed.*, 1984, 5, 57.
- 16. R.A.Y.Jones, Physical and Mechanistic Organic Chemistry, Cambridge, 1979.
- + The ratio of the rate for each alkene compared to 2,3-dimethylbut-2-ene (k/k₀), as determined by the ratio of cyclopropanes produced.
- * The relative reactivity quoted is based on a combination of both stereoisomers of product for the unsymmetrical alkylalkenes; the esters gave a single stereoisomer about the cyclopropane ring, believed to have the vinyl and ester groups cis-.⁶b,⁷
- ** For simplicity, it is assumed at this stage that the sets of reactions involve trapping of common intermediates.
- ++ Reactions were carried out with standard concentrations of cyclopropane and alkene. (Received in UK 13 February 1989)